
Related Pins at Pinterest:
The Evolution of a Real-World Recommender System

David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk,
Kevin C. Ma, Zhigang Zhong, Jenny Liu, Yushi Jing

Pinterest, Inc.
San Francisco, CA

{dliu,srogers,rshiau,dkislyuk,kevinma,az,jennyliu,jing}@pinterest.com

ABSTRACT
Related Pins is the Web-scale recommender system that
powers over 40% of user engagement on Pinterest. This
paper is a longitudinal study of three years of its development,
exploring the evolution of the system and its components
from prototypes to present state. Each component was
originally built with many constraints on engineering effort
and computational resources, so we prioritized the simplest
and highest-leverage solutions. We show how organic growth
led to a complex system and how we managed this complexity.
Many challenges arose while building this system, such as
avoiding feedback loops, evaluating performance, activating
content, and eliminating legacy heuristics. Finally, we offer
suggestions for tackling these challenges when engineering
Web-scale recommender systems.

Keywords
recommendation systems; learning to rank; engineering chal-
lenges

1. INTRODUCTION
Much literature has been published on advanced recom-

mendation systems as well as their real-world applications.
However, it is usually not possible to build state-of-the-art
recommender systems directly. The initial product must
be built with a small engineering team, limited computa-
tional resources, and no training data until the recommender
is bootstrapped. Industry recommenders often deal with
Web-scale data comprising billions of items. The content is
often poorly labeled and training data is noisy because it is
collected through implicit user feedback [11]. As a result,
many practitioners choose to use ad-hoc heuristics and make
trade-offs when building the initial system. However, trying
to grow the system can quickly complicate it, making it
difficult to reason about further changes.

At Pinterest, we had the unique opportunity to observe
these problems over a time horizon of three years, in the

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-7/17/04.
http://dx.doi.org/10.1145/3041021.3054202

.

(a) Related Pins on the pin closeup view.

(b) Some pins on Home Feed are from Related Pins
of recent user activity.

(c) The unauthenticated pin landing page show-
cases Related Pins to entice visitors to sign up.

Figure 1: Some major product surfaces featuring
Related Pins.



context of Related Pins. The initial version of Related Pins,
launched in 2013, was one of the first forays into recommender
systems at Pinterest. Though successful in improving content
discovery, Related Pins initially received minimal engineering
attention. In 2014, about 10% of pins saved across Pinterest
were discovered through Related Pins. In 2015, a small team
began iterating and further developing Related Pins. It now
drives over 40% of all saves and impressions through multi-
ple product surfaces, and it is one of the primary discovery
mechanisms on Pinterest. This paper explores the challenges
of real-world recommender systems through a longitudinal
study of Related Pins. In describing the gradual evolution
of our system we present solutions for these challenges, ra-
tionales for our trade-offs, and key insights learned.

Real-world recommender systems have been described for
music suggestion [4], image search [12], video discovery on
YouTube [2][6][7] and movies on Netflix [9]. Many of these
papers describe final systems; however, they do not describe
how one might build the system incrementally. Many chal-
lenges facing real-world systems are described in [22]. We
provide concrete examples of how these challenges arise in
Related Pins and propose unique solutions.

For Related Pins, we prioritize shipping the simplest,
highest-leverage products first, in order to reach incremental
milestones and demonstrate viability. Our original recom-
mendation algorithm consisted of a simple candidate gen-
erator with many heuristic rules. Though it was built in
just three weeks, it capitalized on the strong signal present
in user-curated boards. We continued adding more candi-
date sources as we identified gaps in the coverage and recall
(Section 3). Over time, we introduced a memorization layer
to boost popular results. Memboost is lightweight, both
in engineering complexity and computational intensity, yet
significantly leverages a vast amount of user feedback. We
had to account for position bias and deal with complexity
in the form of feedback loops, but found the benefits worth
the cost (Section 4). Next, we added a machine-learned
ranking component because we thought it would have the
most potential for impact. We started with a basic linear
model with just nine features. As we found shortcomings
of the model and our training methodology, we began to
experiment with more advanced approaches (Section 5).

2. RELATED PINS SYSTEM OVERVIEW
Pinterest is a visual discovery tool for saving and discover-

ing content. Users save content they find on the Web as pins
and create collections of these pins on boards. Related Pins
leverages this human-curated content to provide personalized
recommendations of pins based on a given query pin. It is
most prominent on the pin closeup view shown in Figure 1.
Related Pins recommendations are also incorporated into
several other parts of Pinterest, including the home feed, pin
pages for unauthenticated visitors, the “instant ideas” button
for related ideas [24], emails, notifications, search results,
and the “Explore” tab.

User engagement on Pinterest is defined by the following
actions. A user closeups on a pin by clicking to see more
details about the pin. The user can then click to visit the
associated Web link; if they remain off-site for an extended
period of time, it is considered a long click. Finally, the user
can save pins onto their own boards. We are interested in
driving “Related Pins Save Propensity,” which is defined as
the number of users who have saved a Related Pins recom-

mended pin divided by the number of users who have seen a
Related Pins recommended pin.

In the Pinterest data model, each pin is an instance of an
image (uniquely identified by an image signature) with a link
and description. Although each pin is on a single board, the
same image can be used in many pins across different boards:
when a pin is saved to a new board, a copy of the pin is
created. Pin information is typically aggregated on the image
signature level, providing richer metadata than individual
pin instances. For convenience, future references to “query
pin” and “result pin” actually refer to the aggregation of pins
with the same image signature.

The Related Pins system comprises three major compo-
nents summarized below. The components were introduced
to the system over time, and they have each evolved dramat-
ically in their own right. Figure 2 shows various snapshots of
our architecture illustrating the evolution of both the overall
system as well as each of the three components. Subsequent
sections of the paper explore their development in more
detail.

(b)

(a)

(c)

(d)

Memboost

hand-tuned weights

Ranking

pre-computed

Memboost

hand-tuned weights

Candidate Generation

Local Cands

Search-Based Cands

Candidate Generation

Candidate Generation

Pin-Board Graph

Candidate Generation

Pin-Board Graph

denotes real-time component

Local Cands

Pin-Board Graph

Memboost

jointly learned
with ranking

Ranking

real-time
personalized

Embedding Neighbor 
Cands

Visually Similar Cands

Pin-Board Graph

Figure 2: Snapshots of our system architecture over
time.

Candidate generation. We first narrow the candidate
set—the set of pins eligible for Related Pin recommendations—
from billions to roughly 1,000 pins that are likely related to
the query pin. We have developed and iterated on several
different candidate generators to do this.

Memboost. A portion of our system memorizes past
engagement on specific query and result pairs. We describe
how we account for position bias when using historical data,
by using a variant of clicks over expected clicks [26]. In-
troducing memorization increases system complexity with
feedback loops, but significantly boosts engagement.

Ranking. A machine-learned ranking model is applied to
the pins, ordering them to maximize our target engagement
metric of Save Propensity. It uses a combination of features



based on the query and candidate pins, user profile, session
context, and Memboost signals. We apply learning-to-rank
techniques, training the system with past user engagement.

3. EVOLUTION OF CANDIDATES
The original Related Pins system consisted of just one

form of candidate generation: leveraging the graph of pin
and boards by extracting frequently co-occurring pins. These
candidates were shown directly to the user as recommenda-
tions (Figure 2a). Later, when we introduced Memboost and
machine-learned ranking, the problem of candidate genera-
tion shifted from precision to recall: generating a diverse set
of pins relevant to the query pin. This led us to add new
candidate sources as we identified gaps in coverage and recall
(Figure 2d).

3.1 Board co-occurrence
Our primary candidate generator continues to be based on

the user-curated graph of boards and pins, but we’ve changed
the method over time to produce more relevant results and
to cover more query pins.

3.1.1 Heuristic Candidates
The original Related Pins were computed in an offline

Hadoop Map/Reduce job: we mapped over the set of boards
and output pairs of pins that occurred on the same board.
There are too many pairs of possible pins, so pairs are ran-
domly sampled to produce approximately the same number
of candidates per query pin. We further added a heuristic
relevance score, based on rough text and category matching.
The score was hand-tuned by inspecting example results.

We chose this method for its simplicity. Because of limited
engineering resources, it was built by two engineers in just
three weeks. Additionally, because the human-curated board
graph was already a very strong signal [18], it proved to be
a rather effective method.

3.1.2 Online Random Walk
We found that the relevance of candidates qualitatively

increases with higher board co-occurrence, as shown in Fig-
ure 3. However, the original method was primarily based on
the heuristic score; it did not attempt to maximize board
co-occurrence. We also noted that rare pins, pins occurring
on only a few boards, did not have many candidates. To ad-
dress these limitations we moved to generating candidates at
serving time through an online traversal of the board-to-pin
graph.

Candidates are now generated by a random walk service
called Pixie [8]. A full description is outside the scope of this
paper, but broadly, Pixie loads the bipartite graph of pins
and boards into a single machine with large memory capacity.
The edges of the graph represent individual instances of a pin
on a board. The graph is pruned according to some heuristic
rules to remove high-degree nodes and low-relevance pins
from boards. Pixie conducts many random walks (on the
order of 100,000 steps) on this graph starting from the query
pin, with a reset probability at each step of the walk, and
aggregates pin visit counts (similar to [10]). This effectively
computes Personalized PageRank on the graph seeded with
the query pin.

This system is much more effective at leveraging board
co-occurrence, since highly connected pins are more likely to
be visited by the random walk. It also increases candidate

coverage for rare pins, since it can retrieve pins that are
several hops away from the query.

3.2 Session Co-occurrence
Board co-occurrence offers good recall when generating

candidates, but the rigid grouping of boards suffers inherent
disadvantages. Boards are often too broad, so any given
pair of pins on a board may only be tangentially related.
This is especially true of long-lived boards, as the topic of
a board will drift with the user’s interest. Boards may also
be too narrow: for example, a whiskey and a cocktail made
with that whiskey might be pinned in close succession to
different boards. Both these shortcomings can be addressed
by incorporating the temporal dimension of user behavior:
pins saved during the same session are typically related in
some way. We built an additional candidate source called
Pin2Vec [19] to harness these session co-occurrence signals.

Pin2Vec is a learned embedding of the N most popular
(head) pins in a d-dimensional space, with the goal of mini-
mizing the distance between pins that are saved in the same
session. The architecture of the neural network is similar
to word2vec [21]. The learning problem is formulated as a
N -way classification, where the input and output are both
one of N pins (Figure 4).

To produce training data, we consider pins that are saved
by the same user within a certain time window to be related.
Each training example is a pair of such pins. Given one of the
pins as input, an embedding matrix maps pin IDs to vectors
in Rd, and a softmax layer is used to map the embedding back
into a predicted output pin ID. The other pin in the pair is
given as the expected output, and we train the embedding by
minimizing the cross-entropy loss of the network. Negative
examples are sampled to make the optimization tractable.
The model is built and trained using TensorFlow [1], and the
result is a d-dimensional embedding for each of the N pins.
At serving time, when the user queries one of the N pins, we
generate candidate pins by looking up its nearest neighbors
in the embedding space. We found that introducing these
session-based candidates in conjunction with board-based
candidates led to a large increase in relevance when one of the
N pins is used as a query. Conceptually, it captures a large
amount of user behavior in a compact vector representation.

3.3 Supplemental Candidates
In parallel with the above progress, we started developing

new candidate generation techniques for two reasons. First,
we wanted to address the cold start problem: rare pins do
not have a lot of candidates because they do not appear on
many boards. Second, after we added ranking (Section 5),
we wanted to expand our candidate sets in the cases where
diversity of results would lead to more engagement. For these
reasons, we started to leverage other Pinterest discovery
technologies.

Search-based candidates. We generate candidates by
leveraging Pinterest’s text-based search, using the query
pin’s annotations (words from the web link or description)
as query tokens. Each popular search query is backed by
a precomputed set of pins from Pinterest Search. These
search-based candidates tend to be less specifically relevant
than those generated from board co-occurrence, but offer a
nice trade-off from an exploration perspective: they generate
a more diverse set of pins that are still somewhat related.



Figure 3: Examples of candidates with low, medium and high board co-occurrences with the query image.
Top example: low: travel destinations, medium: Yosemite viewpoints, high: Half Dome. Bottom example:
low: animals, medium: dogs, high: golden retrievers [15, 18].

Figure 4: Neural network architecture of Pin2Vec.

Visually similar candidates. We have two visual can-
didate sources, described further in [13] and [25]. If the
query image is a near-duplicate, then we add the Related
Pins recommendations for the duplicate image to the results.
If no near-duplicate is identified, then we use the Visual
Search backend to return visually similar images, based on
a nearest-neighbor lookup of the query’s visual embedding
vector.

3.4 Segmented Candidates
Finally, we wanted to address the content activation prob-

lem: rare pins do not show up as candidates because they
do not appear on many boards.

When Pinterest began focusing on internationalization,
we wanted to show international users more results in their
own language. The majority of content was English and
from the United States. Although local content did exist,
it was not very popular nor connected to popular pins, and
thus was not generated by the other candidate sources. To
solve this, we generate additional candidate sets segmented
by locale for many of the above generation techniques. For
example, for board co-occurrence, we filter the input set for
the board-pin graph to only include pins of that given locale.
This methodology could be extended to other dimensions

with content activation issues, too, such as gender-specific
content or fresh content.

4. EVOLUTION OF MEMBOOST
Initial versions of Related Pins already received a high

amount of engagement. As a first step toward learning from
our massive engagement logs, we built Memboost to memorize
the best result pins for each query. We chose to implement
it before attempting full-fledged learning, because it was
much more lightweight and we intuitively believed it would
be effective.

Result Closeup ProbabilityResult Closeup Probability

0 20 40 60 80 1000

0.015

0.03

0.045

0.06
iPhoneiPhoneiPhone iPadiPadiPad AndroidAndroidAndroid Andrd. TabletAndrd. TabletAndrd. Tablet WebWebWeb

SlotSlot

Figure 5: Global click-through rate of Related Pins
by rank and platform.

We initially wanted to simply incorporate the historical
click-through rate of each result. However, log data is subject
to a strong position bias: items shown in earlier positions are
more likely to be clicked on. Figure 5 illustrates this bias in
the global click-through rate of each rank on each platform.
To account for this, we instead chose to compute clicks over
expected clicks (COEC) [26]. Let clicks(q, r) be the total
number of clicks received by result pin r on query pin q,
and let ip,k(q, r) be the number of impressions it received
on platform p and rank k. Each impression contributes a
certain fractional number of expected clicks, based on the
global prior clickratep,k for that rank and platform. The
number of expected clicks for each result is Eclicks(q, r) =∑

p

∑
k ip,k(q, r) · clickratep,k.



We extended these definitions to other engagement actions,
weighting the actions by β1, . . . , β4 as follows.

actions(q, r) = β1 · clicks(q, r) + β2 · longclicks(q, r)

+ β3 · closeups(q, r) + β4 · saves(q, r)

Eactions(q, r) = β1 · Eclicks(q, r) + β2 · Elongclicks(q, r)

+ β3 · Ecloseups(q, r) + β4 · Esaves(q, r)

Now, actions(q, r)/Eactions(q, r) is similar to COEC gen-
eralized to all engagement actions. To get a zero-centered
score where positive and negative values would indicate that
the result was engaged with more and less than expected,
respectively, we use the logarithm of COEC. We also ap-
ply additive smoothing to handle items with low action/
impression counts. The overall Memboost score is thus

MB(q, r) = log
actions(q, r) + α

Eactions(q, r) + α
.

4.1 Memboost Scoring
The Memboost scores are used to adjust the existing scores

of pins, and the final results are sorted by this score.

MemboostedScore(q, r) = Score(q, r) + γ ·MB(q, r)

Until recently, the Memboost weights β1, . . . , β4, γ were hand-
tuned through A/B experiments for maximal engagement,
but only at a single point in time. However, this produces an
undesirable coupling to the scoring function: experimenting
with a new ranker or changing the scoring function could
produce larger or smaller initial scores, inadvertently chang-
ing the relative magnitude of the Memboost weights. The
hand-tuned weights would then no longer be optimal for the
new conditions (system changes, different time period, etc).

To remove this coupling, we now jointly retrain the Mem-
boost parameters when changing the model. We moved to
Memboost as a feature, where the intermediate Memboost
values (clicks, Eclicks, . . . ) are fed as features into the
machine-learned ranker.

4.2 Memboost Insertion
Sometimes, results are known to be good (based on their

Memboost scores), but due to upstream changes in the can-
didate generator and ranking system, the candidate is no
longer present in the results. In order to handle these cases,
we devised a Memboost insertion algorithm which re-inserts
the top n results with the highest aggregate Memboost score
if they are not already in the incoming result set.

4.3 Discussion
Memboost as a whole introduces significant system com-

plexity by adding feedback loops in the system. It’s theoreti-
cally capable of corrupting or diluting experiment results: for
example, positive results from experiments could be picked
up and leaked into the control and production treatments. It
can make it harder to retest past experiments (e.g. new mod-
eling features) after they are launched, because the results
from those experiments may already be memorized.

These problems are present in any memorization-based
system, but Memboost has such a significant positive impact
that we currently accept these implications.

We are currently experimenting with alternatives to Mem-
boost insertion, though. Memboost insertion can slow devel-
opment velocity, because experiments that harm results may

no longer show up as negative A/B results, and the effect of
new ranking experiments may be diluted as top results are
dominated by Memboost insertion. Memboost insertion can
also indefinitely maintain candidates even if the candidate
generator no longer produces them.

A common alternative memorization approach is to incor-
porate item-id as a ranking feature, such as in [5]. However,
that requires a large model—linear in the number of items
memorized—and consequently a large amount of training
data to learn those parameters. Such large models typically
require distributed training techniques. Instead, Memboost
pre-aggregates statistics about the engagement with each
result, which allows us to train the main ranking model on a
single machine.

5. EVOLUTION OF RANKING
Candidate generation and Memboost had already been

working for quite some time before ranking was introduced.
We hypothesized the next biggest potential improvement
would come from adding a ranking component to our system
and applying learning-to-rank techniques [3][17]. The first
learning-to-rank model was an enormous step increase in
Related Pins engagement, increasing user propensity to save
and click results by over 30%.

Pin Raw Data (aggregated across image signature)

Text annotations: aggregated from pin descriptions, links,
board titles, and other metadata
Image features: fc6 and fc8 activations of a deep
convolutional neural network [15]
Word embeddings: aggregated for the text annotations [20]
Category vector: aggregated from user-selected categories
for their boards
Topic vectors: computed from the pin-board graph
Demographic data: gender, country, language affinities

Memboost Data (for query + result pin pair)

Action counts (clicks, long clicks, saves, closeups) for this
result pin.
Expected action counts given the positions in which this
result was displayed.

Offline User Raw Data

Demographic data: gender, country, language
Long- and medium-term activity: pins saved; annotation,
category, and topic vectors

Real-time User Context

Traffic source: home feed, search, board, SEO
Recent search queries: tokens and embeddings
Recent activity: pins saved, clicked, closeupped; annotation,
category and topic vectors

Table 1: Example raw data available to the ranking
feature extractor.

In our application, the ranker re-orders candidate pins in
the context of a particular query Q, which comprises the
query pin, the viewing user, and user context. These query
components and the candidate pin c each contribute some
heterogeneous, structured raw data, such as annotations,
categories, or recent user activity, shown in Table 1.

Our first ranking system only used the pins’ raw data. As
we gained additional engineering capacity to build necessary
infrastructure, we introduced more data into ranking, such as
Memboost and user data. We also introduced personalized



features extracted from users’ recent activities, for example
users’ latest search queries.

We define many feature extractors that take this raw data
and produce a single feature vector φ(Q, c) ∈ RD. Some
feature extractors directly copy raw data into the feature
vector, such as topic and category vectors, while others
compute transformations of raw data, such as normalized or
re-scaled versions of Memboost data. Some feature extractors
apply one-hot encoding to categorical fields like gender and
country. Finally, some feature extractors compute match
scores, such as the category vector cosine similarity between
query and candidate pins, or the distance between query and
candidate image embeddings.

A ranking model F : RD → R takes the feature vector and
produces a final ranking score. This ranking model is learned
from training data that we describe in the next section.

5.1 Choices
We faced three largely orthogonal decisions in building the

ranking system: training data collection method, learning
objective, and model type. We first introduce the options
we have explored for each choice.

5.1.1 Training Data Collection
We explored two main sources of training data.
Memboost scores as training data. Conceptually, the

ranker can learn to predict Memboost scores for query-result
pairs without enough log data to have a confident Memboost
estimate.

Individual Related Pins sessions. A session is defined
as a single user’s interactions with Related Pins results from
a single query pin. We can sample these interactions directly
as training data.

5.1.2 Model Objective
In [17], learning to rank approaches are broadly catego-

rized into pointwise, pairwise, and listwise approaches. The
main difference between these approaches is whether the
loss function considers one, two, or many candidates at a
time. In our work we have explored pointwise and pairwise
approaches, compared in Table 2.

Classification
(Pointwise)

Ranking (Pairwise)

Data labels Binary Relative relevance

Loss function Considers
single
candidate

Considers difference of
scores in candidate pair

Table 2: Comparison of model objectives.

5.1.3 Model Formulation
The precise form of the model determines the model’s

capacity for describing complex relationships between the
features and score. Table 3 compares two model types that
we have used.

5.2 Evolution of our Decisions
Table 4 shows the various combinations of training data,

objective, and model that we have explored in Related Pins
ranking.

Linear Model Gradient-Boosted
Decision Trees

Scoring Linear combination of
features

Sum of ensemble of
piecewise-constant
decision trees

Learning Learn weight vector by
logistic regression or
RankSVM

Learn decision trees
sequentially via
gradient boosting

Table 3: Comparison of model types.

Version 1: Memboost training data, relevance pair
labels, pairwise loss, and linear RankSVM [14] model.
In our first iteration, we chose to use Memboost data because
we found it to be the highest-quality signal, by virtue of be-
ing an aggregation of millions of users’ behavior over a large
time period. We explicitly sampled pairs of pins (r1, rn),
(rn, rrand) for each query, where r1, rn are the results with
highest and lowest Memboost scores, respectively, for a given
query. rrand is a randomly generated popular pin from Pin-
terest, added to stabilize the rankings, as suggested in [14].
We reasoned that pins with low Memboost scores would
still be more relevant than purely random pins, because the
candidate generator provides some degree of relevance.

When we manually examined pairs from Memboost data,
we found that we could guess which pin had a higher Mem-
boost score about 70% of the time. This indicated to us that
the training data was fairly clean. (For comparison, pairs
sampled from individual user sessions are much noisier; we
couldn’t discern with any confidence which of two pins was
saved by the user.) Thus, we could use a much smaller corpus
and train a model within minutes on a single machine.

Version 2: Moved to individual Related Pins ses-
sions. We wanted to use user- and context-specific features,
but using Memboost data inherently precludes personaliza-
tion because it is aggregated over many users, losing the
association with individual users and session context. Ad-
ditionally, we found that only popular content had enough
interaction for reliable Memboost data. These limitations
motivated the switch to individual Related Pins sessions.

Each logged session consists of the query pin, viewing user,
and recent action context, and a list of result pins. Each
result also has a corresponding engagement label (one of
impression only, closeup, click, long click, and save). For the
purposes of training, we trim the logged set of pins, taking
each engaged pin as well as two pins immediately preceding
it in rank order, under the assumption that the user probably
saw the pins immediately preceding the pin they engaged
with. In this iteration, we continued to use a pairwise loss,
but with pin relevance pairs defined by a relative ordering of
actions: save > long click > click > closeup > impression
only.

Version 3: Moved to a RankNet [3] GBDT Model.
We found that a simple linear model was able to capture
a majority of the engagement gain from ranking. However,
linear models have several disadvantages: first, they force
the score to depend linearly on each feature. For the model
to express more complex relationships, the engineer must
add transformations of these features (bucketizing, percentile,
mathematical transformations, and normalization). Second,
linear models cannot make use of features that only depend
on the query and not the candidate pin. For example, if



Training Data Label Type Objective Model

V1 Memboost Relevance pairs (high MB > low MB ; low MB > random) Pairwise, RankSVM loss Linear
V2 Individual sessions Relevance pairs (save > closeup ; ...) Pairwise, RankSVM loss Linear
V3 Individual sessions Relevance pairs (save > closeup ; ...) Pairwise, RankNet loss GBDT
V4 Individual sessions Binary (pin saved?) Pointwise, logistic loss GBDT

Table 4: Evolution of our ranking system. Each row denotes a combination of training data, objective, and
model choices that we used.

a feature φk represents a feature like “query category =
Art”, every candidate pin would get the same contribution
wkφk to its score, and the ranking would not be impacted.
The features specific to the query must be manually crossed
with candidate pin features, such as adding a feature to
represent “query pin category + candidate category”. It is
time consuming to engineer these feature crosses.

To avoid these downsides, we moved to gradient-boosted
decision trees (GBDT). Besides allowing non-linear response
to individual features, decision trees also inherently consider
interactions between features, corresponding to the depth
of the tree. For example, it becomes possible to encode
reasoning such as “if the query pin’s category is Art, visual
similarity should be a stronger signal of relevance.” By
automatically learning feature interactions, we eliminate
the need to perform manual feature crosses, speeding up
development.

Version 4: Moved to pointwise classification loss,
binary labels, and logistic GBDT model. Although we
initially opted for pairwise learning, we have since attained
good results with pointwise learning as well. Since our pri-
mary target metric in online experiments is the propensity of
users to save result pins, using training examples which also
include closeups and clicks seemed counterproductive since
these actions may not reflect save propensity. We found that
giving examples simple binary labels (“saved” or “not saved”)
and reweighting positive examples to combat class imbalance
proved effective at increasing save propensity. We may still
experiment with pairwise ranking losses in the future with
different pair sampling strategies.

5.3 Previous-Model Bias
During our efforts to improve ranking, we experienced

a major challenge. Because engagement logs are used for
training, we introduced a direct feedback loop, as described
in [22]: the model that is currently deployed dramatically
impacts the training examples produced for future models.
We directly observed the negative impact of this feedback
loop. When we trained the first ranking model, the logs
reflected user’s engagement with results ranked only by the
candidate generator. The learned model was applied to
rank these same candidates. Over the following months, the
training data only reflected engagement with pins that were
highly ranked by the existing model (Figure 6a). When we
tried to train a model with the same features but with the
latest engagement data, we were unable to beat the already-
deployed model. We hypothesized that the feedback loop
posed a problem since the distribution of training pins no
longer matched the distribution of pins ranked at serving
time.

To alleviate this “previous-model” bias in the training data,
we allocate a small percentage of traffic for “unbiased data
collection”: for these requests, we show a random sample from

(a) Direct feedback loop

(b) No feedback loop

Figure 6: We removed a feedback loop by collecting
randomized training data.

all our candidate sources, randomly ordered without ranking.
This isolates the training data from being influenced by the
previous model (Figure 6b). Although the unranked results
are lower quality, they provide valuable data for training new
ranking models. To avoid degrading any particular user’s
experience too much, each user is served unranked pins on
only a small random subset of queries. Although the volume
of training data becomes limited to this small percentage
of overall traffic, the resulting models perform better than
models trained with biased data.

5.4 Success Metrics
One important step in being able to explore these different

options is being able to iterate quickly. The gold standard
for testing changes is online A/B experimentation, where we
evaluate ranking primarily by their impact on save propensity.

All changes undergo online experiments, but this process
takes days or weeks to collect data. We find it helpful to test
changes immediately via offline evaluation to approximate
different models’ performance. In this process, we reuse
much of our training data generator to sample individual
Related Pins sessions, but choose a distinct range of dates
that follows the training date range, and a slightly different
sampling strategy. For each session we rescore the pins that
the user actually saw, using the models under test, then
measure the agreement between the scores and the logged
user behavior.

We have experimented with various measures, including
normalized discounted cumulative gain (NDCG), area under
the precision-recall curve (PR AUC) with various interpola-
tion methods, and precision vs. position AUC.



To determine how well these offline evaluation metrics
predict live A/B experiment impact, we examined the results
for several of our past ranking model changes. We examined
the directionality as well as the magnitude of the difference
predicted by offline evaluation, and compared it to the actual
experiment results. We found that PR AUC metrics are
extremely predictive of closeups and clickthroughs in A/B
experiments, but we had difficulty predicting the save behav-
ior using offline evaluation. For now, we use offline metrics
as a sanity check and rough estimation of potential impact.

5.5 Serving Infrastructure
Related Pins serves many tens of thousands of queries

per second at peak loads. To handle this scale, we leverage
several existing Pinterest systems.

Our first version of pin ranking was pre-computed in offline
map-reduce jobs and served from Terrapin [23], an immutable
key-value lookup service. This required a massive map-reduce
job to join raw data for every query and candidate, compute
features and score the items.

Due to limitations of the cluster we could only rank a
few million queries at a time, yielding 50% coverage of user
queries. We scaled up by running the reranking job on differ-
ent segments at a time and combining the results, but this
approach was inherently unable to give full coverage in a
reasonable amount of time. Offline ranking also significantly
slowed development velocity: each experiment that changed
the model (feature development, training data changes) re-
quired reranking all queries offline, a time-consuming process.

Thus, we moved to an online ranking serving system. The
pin raw data is stored on a sharded key-value store called
RealPin [16], keyed by image signature. To perform ranking,
we assemble a request with the list of candidate pins and
other raw data that will be needed to compute the features
and score: query pin raw data (retrieved from RealPin),
offline user raw data (from Terrapin), recent user activity
(from a service called UserContextService), and Memboost
data (from Terrapin). The RealPin root server replicates the
request to the leaves, routing the appropriate subset of the
candidates to each leaf server. The leaves locally retrieve pin
raw data and invoke our custom feature extractor and scorer.
The leaves send the top candidates and scores to the root
node, which gathers and returns the overall top candidates.

We chose this serving architecture to increase data lo-
cality. The Hadoop-based system suffered from having to
transfer a huge amount of pin raw data for each query. We
have also seen that other online pin scoring systems were
network-bound due to transfer of pin raw data. By pushing
computation down to the nodes that store the candidates’
pin raw data, the bulk of the data transfer can be avoided.

6. CHALLENGES

6.1 Changing Anything Changes Everything
According to [22] machine-learning systems inherently tan-

gle signals; inputs are never really independent, resulting in
the Changing Anything Changes Everything (CACE) princi-
ple: one component of a system can be highly optimized for
the existing state of the system. Improving another compo-
nent may actually result in worse overall performance. This is
a system-level local optimum that can make further progress
difficult. Our general solution is to jointly train/automate
as much of the system as possible for each experiment.

We present several examples where this particular challenge
has appeared within our simple recommendation system and
our mitigations.

Example 1: Many parameters are used in various stages
in our recommender pipeline. Recall that we used hand-
tuned weights for Memboost optimized with time- and labor-
intensive A/B experiments; these became quickly outdated
as other parts of the system changed. Jointly training Mem-
boost weights avoids this problem. Similarly, the ranking
learners have hyperparameters that must be tuned. To avoid
other changes resulting in hyperparameters becoming subop-
timal, we implemented a parallelized system for automated
hyperparameter tuning. As a result, we can now optimize
hyperparameters each time we change the model.

Example 2: “Improvements” to the raw data can harm
our results since our downstream model is trained on the old
definition of the feature. Even if a bug is fixed, for example in
the computation of pin category vectors, our existing model
would depend on the flawed definition of the feature, so the
fix may negatively impact our system. This is especially
problematic if the change originates from another team. In
[22], this is termed an unstable data dependency.

Currently we must manually retrain our model with up-
dated raw data, and deploy the new model and raw data
into production at the same time. In addition to being time-
consuming, this solution is less-than-ideal since it requires
us to know of the upstream change. Ideally, we would au-
tomate the continual retraining of our model, which would
incorporate any change in upstream data.

Example 3: Finally, we have experienced complex in-
terdependencies between candidate generation and ranking.
The model becomes attuned to the idiosyncrasies of the train-
ing data. For example, changing or introducing a candidate
generator can cause the ranker to become worse, since the
training data distribution will no longer match the distri-
bution of data ranked at serving time; an issue we saw in
training data collection. If introducing a candidate generator
does not result in a performance improvement, how does
one determine if this was because the candidate generator
is poor or because the ranker was not trained on candidates
from that candidate generator? Our current solution is to
insert the new candidates into the training data collection
for some time before running an experiment with a newly
trained model.

This problem highlights the need to simplify the system as
much as possible, because the number of possible unintended
interactions increases rapidly with the number of system
components.

6.2 Content Activation
There is a large amount of content without much engage-

ment, but that could be potentially relevant and high quality.
Millions of new images are uploaded to Pinterest each day.
Additionally, there is a large pool of “dark” content that is
high quality but rarely surfaced. Balancing fresh and dark
content with well-established, high-quality content represents
the classic explore vs. exploit problem, which is an open prob-
lem at Pinterest. We dive deeper into how we solved for
content activation for the particular case of localization.

Since Pinterest is an increasingly international product,
we made a special effort to ensure that international users
saw content in their own language. Making Related Pins
local was difficult for two main reasons. First, there were not



many local candidates in the first place, since the content
did not appear on many boards. Second, there was much less
historical engagement with local content, which caused our
models to rank it lower, even if we did have local candidates.

We tried several approaches to solve these issues, and were
eventually able to increase the fraction of local results from
9% local to 54% local as shown in Figure 7.

Figure 7: Proportion of Related Pins impressions
that are local (in the user’s native language) for our
major international countries.

Local pin swap.
For each related pin we generate, we check if there is a

local alternative with the same image. If so, then we swap
the result pin with a pin in the viewer’s language. As a result
we increased local impressions and local pins saved, without
changing the relevance of the results.

Local pin boost.
When result pins existed that were in the viewer’s language,

we attempted to artificially promote them to a higher position
in the result set. This did not prove to be particularly
effective, because the candidates at the time did not contain
many local pins, resulting in low coverage for this solution.

Localizing candidate sets.
We modified our board-based candidate generation method

to filter on language before sampling pins, producing a seg-
mented corpus of pins for each language, described in Sec-
tion 3.4. Furthermore, as a way of increasing exposure to
these local pins, we chose to blend local candidates into the
results at various ratios.

7. CONCLUSION
Recommender systems literature showcase many impres-

sive state-of-the-art systems, which usually reflect years of
iteration. Yet it’s common in industry to prioritize the sim-
plest, highest-leverage solutions. We offer an inside look at
the process by which a recommender system can be conceived
and developed by a small engineering team, with limited com-
putational resources and noisy Web-scale data. We illustrate
how organic system growth leads to complexity, and how
the CACE principle is indeed pervasive in real-world recom-
mender systems. We identify unique interdependencies that
made it hard to reason about changes in Related Pins, and

propose to mitigate these issues by automated joint training
of system components. We tackle the challenge of activating
unconnected content, both with regards to the “cold-start”
problem and the “rich get richer” problem that is prevalent
among systems that exploit engagement signals. In these
solutions, it was important to diversify content, because
engagement is not always correlated to relevance. Finally,
making more of the system real-time, both in candidate
generation and ranking, significantly increased velocity of
experimentation and improved responsiveness of the results.

8. ACKNOWLEDGMENTS
We thank Dmitry Chechik, Hui Xu, and Yuchen Liu, for

developing the original version of board-based Related Pins;
Bo Liu, Shu Zhang, and Jian Fang, for serving infrastruc-
ture components; Vanja Josifovski, Xin Liu, and Mukund
Narasimhan for sharing machine learning insight and exper-
tise; Jure Leskovec, Pong Eksombatchai, and Mark Ulrich
for the Pixie service; Sarah Tavel, Maura Lynch, and Frances
Haugen for product management support; Patrick Phelps
for data science support. Thanks also to Yuchen Liu for
Figure 3.

9. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. ManÃl’, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. ViÃl’gas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, 2015.

[2] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. Video
suggestion and discovery for youtube: taking random
walks through the view graph. In Proceedings of the
17th international conference on World Wide Web,
pages 895–904. ACM, 2008.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd
international conference on Machine learning, pages
89–96. ACM, 2005.

[4] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma. Scalable
music recommendation by search. In Proceedings of the
15th ACM international conference on Multimedia,
pages 1065–1074. ACM, 2007.

[5] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked,
T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, et al. Wide & deep learning for
recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems,
pages 7–10. ACM, 2016.

[6] P. Covington, J. Adams, and E. Sargin. Deep neural
networks for youtube recommendations. In Proceedings
of the 10th ACM Conference on Recommender Systems,
New York, NY, USA, 2016.

[7] J. Davidson, B. Liebald, J. Liu, P. Nandy,
T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert,



B. Livingston, and D. Sampath. The youtube video
recommendation system. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys
’10, pages 293–296, New York, NY, USA, 2010. ACM.

[8] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu,
R. Sharma, C. Sugnet, M. Ulrich, and J. Leskovec.
Pixie: A system for recommending 1+ billion items to
150+ million pinterest users in real-time. 2017.

[9] C. A. Gomez-Uribe and N. Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Trans. Manage. Inf. Syst.,
6(4):13:1–13:19, Dec. 2015.

[10] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. Wtf: The who to follow service at twitter. In
Proceedings of the 22nd international conference on
World Wide Web, pages 505–514. ACM, 2013.

[11] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In 2008 Eighth
IEEE International Conference on Data Mining, pages
263–272. Ieee, 2008.

[12] Y. Jing and S. Baluja. Pagerank for product image
search. In Proceedings of the 17th international
conference on World Wide Web, pages 307–316. ACM,
2008.

[13] Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu,
J. Donahue, and S. Tavel. Visual search at pinterest. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1889–1898. ACM, 2015.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, pages 133–142,
New York, NY, USA, 2002. ACM.

[15] D. Kislyuk, Y. Liu, D. Liu, E. Tzeng, and Y. Jing.
Human curation and convnets: Powering item-to-item
recommendations on pinterest. arXiv preprint
arXiv:1511.04003, 2015.

[16] B. Liu. Realpin: A highly customizable object retrieval
system. RocksDB meetup, 2015.

[17] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[18] Y. Liu, D. Chechik, and J. Cho. Power of human
curation in recommendation system. In Proceedings of
the 25th International Conference Companion on
World Wide Web, pages 79–80. International World
Wide Web Conferences Steering Committee, 2016.

[19] K. Ma. Applying deep learning to related pins.
Pinterest Engineering Blog, 2017.

[20] J. Mao, J. Xu, K. Jing, and A. L. Yuille. Training and
evaluating multimodal word embeddings with
large-scale web annotated images. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 442–450. Curran
Associates, Inc., 2016.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781, 2013.

[22] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F.
Crespo, and D. Dennison. Hidden technical debt in
machine learning systems. In Advances in Neural
Information Processing Systems, pages 2503–2511,
2015.

[23] V. Sharma. Open-sourcing terrapin: A serving system
for batch generated data. Pinterest Engineering Blog,
2015.

[24] E. Sharp. Search outside the box with new pinterest
visual discovery tools. Pinterest Blog, 2017.

[25] A. Zhai, D. Kislyuk, Y. Jing, M. Feng, E. Tzeng,
J. Donahue, Y. L. Du, and T. Darrell. Visual discovery
at pinterest. In Proceedings of the International
Conference on World Wide Web (WWW), 2017.

[26] W. V. Zhang and R. Jones. Comparing click logs and
editorial labels for training query rewriting. In WWW
2007 Workshop on Query Log Analysis: Social And
Technological Challenges, 2007.


